Part Number Hot Search : 
2SA1512 TT3042 AGM6448G ONTROL HGT1S H334M 2158AE SJ801
Product Description
Full Text Search
 

To Download 10-F006PPA015SB-M684B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-F006PPA015SB-M684B preliminary datasheet flowpim0+pfc 2nd 600v/15a clip in pcb mounting trench fieldstop igbt's for low saturation losses latest generation superjunction mosfet for pfc industrial drives embedded drives 10-F006PPA015SB-M684B t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 26 t c =80c 3 6 t h =80c 3 2 t c =80 c 4 8 maxim um junction temperature t j max 150 c pow er dissipation per diode i 2 t w a 200 types i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode 200 a features flowpim0+pfc 2nd target applications schematic dc forward current surge forward current t j =150c t j =t j max t p =10ms t j =t j max p tot copyright vincotech 1 revision: 1
10-F006PPA015SB-M684B preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition pfc mosfet v ds 600 v t h =80c 20 t c =80c 2 4 i d =9,3a v d d =50v i d =9,3a v dd =50v mosfe t dv/dt ruggedness dv/dt v ds =0...480v 50 v/ns t h =8 0c 64 t c =80c 9 7 gate- source peak voltage v gs 20 v dv/dt v ds =0 ...400v , i sd i d tj=25 c 15 v/ns t j ma x 150 c pfc diode t h =80c 21 t c =80c 2 8 t h =80c 3 4 t c =80 c 5 2 pfc shunt inverter transistor t h =80c 19 t c =80c 2 5 t h =80c 4 5 t c =80c 6 9 t sc t j 150c 6 s v cc v ge = 1 5v 360 v tj=2 5c tj=25c 300 45 20 159 1135 1,72 9,3 t j =t j max 55 p tot ga t e-emitter peak voltage v a pulsed drain current p tot e ar avalanche current, repetitive i ar maximum junction temperature i dpulse i d a a e as mj w avalan ch e energy, repetitive avalanche energy, single pulse mj a a c w a peak repetitive reverse voltage t j =25c 150 dc f orward current non-repetitive peak surge current t j max 600 dra i n to source breakdown voltage dc drain current power dissipation reverse diode dv/dt t j =t j max t j =t j max t j =25c pulsed collector current power dissipation per igbt maximum junction temperature short circuit ratings turn off safe operating area collector-emitter break down voltage dc collector current power dissipation maximum junction temperature dc forward current power dissipation per shunt t j =t j max t j =t j max vce 6 0 0v, tj top max t j =t j max t p limited by t j max a t c =25c t c =25c 600 3 a v w 60hz single half-sine wave 45 v ce i c p tot v ge i cpulse t j max p tot i f i f v rrm i fsm w a v c 175 copyright vincotech 2 revision: 1
10-F006PPA015SB-M684B preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 18 t c =80c 2 5 t h =80c 3 5 t c =80 c 5 2 dc link capacitor thermal properties insulation properties v is t=2s dc volt age 4000 v min 12,7 mm min 12,7 mm cti >200 30 comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition cleara nce -40+(tjmax - 25) c storage temperature t stg -40+125 c t c =25c m ax.dc voltage v max 500 v t j =t j max t p limited by t j max dc for ward current t j =t j max a i f v rrm t j =25c a w 175 c ma x imum junction temperature peak repetitive reverse voltage repetitive peak forward current power dissipation per diode v t j max i frm p tot 600 copyright vincotech 3 revision: 1
10-F006PPA015SB-M684B preliminary datasheet parame ter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,20 tj=125c 1,17 tj=25c 0,92 tj=125c 0,81 tj=25c 11 tj=125c 14 tj=25c 0,05 tj=125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,20 k/w tj=25c 70 tj=125c 143 tj=25c 2,4 3 3,6 tj=125c tj=25c 100 tj=125c tj=25c 5 tj=125c tj=25c 23 tj=125c 21 tj=25c 5 tj=125c 10 tj=25c 164 tj=125c 172 tj=25c 7 tj=125c 14 tj=25c 0,11 tj=125c 0,36 tj=25c 0,02 tj=125c 0,06 tj=25c tj=125c tj=25c tj=125c tj=25c tj=125c tj=25c 2,44 2,6 tj=125c 1,79 tj=25c 100 tj=125c tj=25c 39 tj=125c 20 tj=25c 13 tj=125c 40 tj=25c 0,25 tj=125c 0,48 tj=25c 0,04 tj=125c 0,04 di(rec)max tj=25c 12850 /dt tj=125c 1031 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,05 k/w th ermal grease thickness 50um = 1 w/mk k/w 170 25, 8 480 15 a/s 0,00172 v (gs)th na v ns mws m ppm/k k/w nh c nc n a m n s a 1,10 215 3 8 00 87 1600 temperature coeficient r1 value 15 reverse recovery charge peak recovery current peak rate of fall of recovery current 30 15 400 15 gate threshold voltage 20 0,85 a v 0 600 15 reverse current i r v v m ma 25 25 25 characte ristic values forward voltage thresho ld voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 21 15 100 400 t j =25c gate to source leakage current static drain to source on resistance rgoff=8 t r t d(off) t d(on) i gss turn on delay time value condit i ons gate resistance gate t o source charge turn-on energy loss per pulse output capacitance gate to drain charge pfc mosfet rise time turn o f f delay time total gate charge fall time turn-off energy loss per pulse input capacitance pfc diode forward voltage reverse leakage current reverse recovery time reverse recovered energy pfc shunt inductance intern a l heat resistance i rrm i rm c iss e rec l v f r thjh c oss r g t c r thi t rr r q rr q gs q gd q ge e off thermal resistance chip to heatsink per chip rgon=8 r ds(on) t f e on 0 10 10 f=1mhz rgon=8 15 20c to 60c 400 zero gate voltage drain current i dss 0 10 3 pf 10 30 mws copyright vincotech 4 revision: 1
10-F006PPA015SB-M684B preliminary datasheet parame ter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value condit ions tj=25c 5 5,8 6,5 tj=125c tj=25c 1,1 1,61 1,9 tj=125c 1,81 tj=25c 0,85 tj=125c tj=25c 300 tj=125c tj=25c 49 tj=125c 50 tj=25c 20 tj=125c 21 tj=25c 120 tj=125c 142 tj=25c 83 tj=125c 82 tj=25c 0,39 tj=125c 0,53 tj=25c 0,41 tj=125c 0,56 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,10 k/w tj=25c 1,28 1,79 1,95 tj=125c 1,67 tj=25c 9 tj=125c 11 tj=25c 178 tj=125c 255 tj=25c 0,71 tj=125c 1,40 di(rec)max tj=25c 37 /dt tj=125c 74 tj=25c 0,20 tj=125c 0,40 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,75 k/w tj=2 5c a pf 55 mws ns ns a n c n a v v v tj=25c tj=25c tc=100c tj=25c mws c 24 rgon=16 thermistor dc lin k capacitor c value c rgon=16 0 20 r/r r1 0 0=1486 rated resistance r power d issipation constant deviation of r100 mw/k power dissipation p mw 400 400 0,00021 25 0 480 15 reverse recovery time collector-emitter saturation voltage reverse recovered energy peak rate of fall of recovery current reverse transfer capacitance diode forward voltage gate charge c ies 15 turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current 15 15 15 600 1 5 15 rgoff=16 f=1mhz a/s inpu t capacitance collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage gate-e m itter leakage current v ge(th) v ce(sat) i ces r gint i ges t f e on e off t d(on) i rrm v f erec c oss c rss q rr t rr t r t d(off) v ce =v ge q gate 0 15 3,5 210 -5 % nf 100 22000 5 none tj= 2 5c 87 860 15 b-value b (25/50) tol. 3% k b (25/100) tj=25c 4000 k tj=25c b-value tol. 3% vincotech ntc reference a tj=25c copyright vincotech 5 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 2 5 0 s t j = 25 c t j = 1 25 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a functi on of forward voltage i f = f(v f ) at at t p = 25 0 s t p = 2 5 0 s v ce = 1 0 v outp ut inverter typical output characteristics 0 5 10 15 20 25 30 35 40 45 0 1 2 3 4 5 v ce (v) i c (a) 0 3 6 9 12 15 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 40 45 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 6 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f( r g ) with a n inductive load at with an inductive load at t j = 25/12 5 c t j = 25/125 c v ce = 400 v v ce = 40 0 v v ge = 15 v v ge = 15 v r gon = 16 i c = 15 a r go ff = 16 figure 7 o utput inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with a n inductive load at with an inductive load at t j = 25/12 5 c t j = 25/125 c v ce = 400 v v ce = 40 0 v v ge = 15 v v ge = 15 v r gon = 16 i c = 15 a ou tp ut inverter e on high t e off high t e on low t e off low t 0 0,2 0,4 0 , 6 0,8 1 1,2 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,2 0,4 0,6 0,8 1 1,2 0 16 32 48 64 80 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,1 0,2 0, 3 0,4 0,5 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,1 0,2 0,3 0,4 0,5 0 16 32 48 64 80 r g ( w ) e (mws) copyright vincotech 7 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f( r g ) with a n inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 4 00 v v ce = 40 0 v v ge = 15 v v ge = 15 v r gon = 16 i c = 15 a r go ff = 16 figure 1 1 output inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25 /12 5 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 15 v i f = 15 a r g on = 1 6 v ge = 15 v o ut put inverter t doff t f t don t r 0,00 0,01 0,1 0 1,00 0 5 10 15 20 25 30 i c (a) t ( m s) t rr t j = t jmax -25c t rr t j = 25c 0 0,1 0,2 0, 3 0,4 0 16 32 48 64 80 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0,1 0 1,00 0 16 32 48 64 80 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0 0,1 0,2 0, 3 0,4 0 5 10 15 20 25 30 i c (a) t rr ( m s) copyright vincotech 8 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 2 5/12 5 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 15 v i f = 15 a r g on = 1 6 v ge = 15 v fi gure 15 output inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 /12 5 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 15 v i f = 15 a r g on = 1 6 v ge = 15 v o ut put inverter t j = t jmax - 25c t j = 25c i rrm 0 10 20 30 40 0 16 3 2 48 64 80 r gon ( w ww w ) i rrm (a) i rrm t j = t jmax -25c q rr t j = 25c q rr 0 0,5 1 1,5 2 0 16 3 2 48 64 80 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 3 6 9 12 0 5 10 15 20 25 3 0 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0,5 1,0 1, 5 2,0 0 5 10 15 20 25 30 i c (a) q rr ( m c) copyright vincotech 9 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,d i rec /dt = f(r gon ) at at t j = 25 /12 5 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 15 v i f = 15 a r g on = 1 6 v ge = 15 v fi gure 19 output inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd tra nsient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r t hjh = 2,10 k/ w r thjh = 1,70 k/ w r thjh = 2,75 k/ w r thjh = 2,23 k/ w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,07 3,4e+00 0,06 2,8e+00 0,05 8,2e+00 0,04 6,6e+00 0,25 3,7e-01 0,20 3,0e-01 0,17 7,4e-01 0,14 6,0e-01 0,98 7,6e-02 0,79 6,2e-02 0,78 1,1e-01 0,64 8,7e-02 0,42 1,4e-02 0,34 1,1e-02 0,74 3,1e-02 0,60 2,5e-02 0,19 2,5e-03 0,16 2,1e-03 0,48 5,4e-03 0,39 4,4e-03 0,19 3,0e-04 0,15 2,4e-04 0,24 8,5e-04 0,19 6,9e-04 output inverter phase change interface thermal grease thermal grease phase change interface t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt 0 2000 40 0 0 6000 8000 0 16 32 48 64 80 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 200 400 6 0 0 800 1000 1200 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt copyright vincotech 10 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c t j = 1 75 c v ge = 1 5 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forward c urrent as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 1 75 c ou tput inverter 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 11 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate vol tage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = si ngle pulse i c = 15 a t h = 80 o c v ge = 15 v t j = t j max oc figure 27 o utput inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short c ircuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 60 0 v v ce 6 0 0 v t j 175 oc t j = 1 75 oc ou tput inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 20 0 25 50 75 100 125 150 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 50 100 150 200 250 300 350 12 13 14 15 16 17 18 19 20 v ge (v) i c (sc) copyright vincotech 12 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jma x -25 oc u ccmi n us =u ccplus switching mode : 3 level switching 0 5 10 15 20 25 30 35 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 13 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 1 pfc mosfet figure 2 pfc mosfet typical output characteristics typical output characteristics i d = f(v ds ) i d = f(v ds ) at at t p = 25 0 s t p = 2 5 0 s t j = 25 c t j = 125 c v g s from 0 v to 20 v in steps of 2 v v gs from 0 v to 20 v in steps of 2 v figure 3 pfc mosfe t figure 4 pfc fwd typical transfer characteristics typical diode forward current as a function of forward voltage i d = f(v gs ) i f = f(v f ) at at t p = 25 0 s t p = 2 5 0 s v ds = 1 0 v pfc 0 25 50 75 100 125 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 2 4 6 8 10 v ds (v) i d (a) 0 10 20 30 40 50 0 2 4 6 8 10 v ds (v) i d (a) 0 5 10 15 20 25 30 0 1 2 3 4 5 6 v gs (v) i d (a) t j = 25c t j = t jmax -25c copyright vincotech 14 revi s ion: 1
10-F006PPA015SB-M684B preliminary datasheet figure 5 pfc mosfet figure 6 pfc mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i d ) e = f( r g ) with a n inductive load at with an inductive load at t j = 25/12 5 c t j = 25/125 c v ds = 400 v v ds = 40 0 v v gs = 1 0 v v gs = 10 v r gon = 8 i d = 15 a r goff = 8 figure 7 pfc mosfe t figure 8 pfc mosfet typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector (drain) current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with a n inductive load at with an inductive load at t j = 25/12 5 c t j = 25/125 c v ds = 400 v v ds = 40 0 v v gs = 1 0 v v gs = 10 v r gon = 8 i d = 15 a r goff = 8 pfc t j = t jmax -25c e rec t j = 25c e rec 0,00 0,02 0,0 4 0,06 0,08 0,10 0 5 10 15 20 25 30 i c (a) e (mws) e rec t j = t jmax - 25c e rec t j = 25c 0,00 0,03 0,0 6 0,09 0,12 0,15 0 8 16 24 32 40 r g ( w ww w ) e (mws) e off e on e on e off 0 0,15 0,3 0 ,45 0,6 0,75 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e off e on e on t j =25c e off 0 0,1 0,2 0,3 0,4 0,5 0,6 0 8 16 24 32 40 r g ( w ww w ) e (mws) copyright vincotech 15 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 9 pfc mosfet figure 10 pfc mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i d ) t = f( r g ) with a n inductive load at with an inductive load at t j = 125 c t j = 125 c v ds = 4 00 v v ds = 40 0 v v gs = 1 0 v v gs = 10 v r gon = 8 i c = 15 a r goff = 8 figure 11 p fc fwd figure 12 pfc fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25 /12 5 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 1 0 v i f = 15 a r go n = 8 v g s = 10 v pfc t doff t don t r 0,00 0,01 0,1 0 1,00 0 5 10 15 20 25 30 i d (a) t ( m s) t doff t don t r 0,00 0,01 0,1 0 1,00 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t rr t j = t jmax -25c t rr t j = 25c 0,00 0,01 0,0 2 0,03 0,04 0,05 0,06 0 8 16 24 32 40 r gon ( w ww w ) t rr ( m s) t rr t rr 0 0,01 0,0 2 0,03 0,04 0,05 0 5 10 15 20 25 30 i c (a) t rr ( m s) copyright vincotech 16 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 13 pfc fwd figure 14 pfc fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 2 5/12 5 c t j = 25/125 c v ce = 400 v v r = 4 00 v v ge = 10 v i f = 15 a r g on = 8 v gs = 10 v figure 15 p fc fwd figure 16 pfc fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 /12 5 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 1 0 v i f = 15 a r go n = 8 v g s = 10 v pfc t j = t jmax -25c i rrm t j = 25c i rrm 0 15 30 45 60 75 0 8 1 6 24 32 40 r go n ( w ww w ) irr m (a) q rr t j = t jmax - 25c q rr t j = 25c 0,0 0,1 0,2 0 , 3 0,4 0,5 0,6 0 8 16 24 32 40 r gon ( w ) q rr ( m c) t j = t jmax - 25c i rrm t j = 25c i rrm 0 10 20 30 40 50 6 0 0 5 10 15 20 25 30 i c (a) irr m (a) q rr t j = t jmax - 25c q rr t j = 25c 0 0,15 0, 3 0 ,45 0,6 0,75 0 5 10 15 20 25 30 i c (a) q rr ( m c) copyright vincotech 17 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 17 pfc fwd figure 18 pfc fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,d i rec /dt = f(r gon ) at at t j = 25 /12 5 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 1 0 v i f = 15 a r g on = 8 ,01 v gs = 1 0 v figure 19 pfc mosfe t figure 20 pfc fwd igbt/mosfet transient thermal impedance fwd transient therma l impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r t hjh = 1,10 k/ w r thjh = 0,89 k/ w r thjh = 2,05 k/ w r thjh = 1,66 k/ w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,04 14,82 0,03 12,02 0,08 8,12 0,07 6,58 0,13 1,22 0,10 0,99 0,23 0,73 0,19 0,59 0,59 0,22 0,47 0,18 0,90 0,16 0,73 0,13 0,21 0,06 0,17 0,05 0,49 0,05 0,40 0,04 0,09 0,01 0,07 0,01 0,21 0,01 0,17 0,01 0,04 0,00 0,04 0,00 0,14 0,00 0,11 0,00 pfc thermal grease phase change interface thermal grease phase change interface t j = 25c t j = t jmax - 25c 0 6000 120 00 18000 24000 30000 36000 0 8 16 24 32 40 r g on ( w ) di rec / dt (a/ m s) di 0 /dt di rec /dt t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t j = t jmax -25c t j = 25c 0 3000 600 0 9000 12000 15000 18000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ m s) di 0 /dt di rec /dt copyright vincotech 18 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 21 pfc mosfet figure 22 pfc mosfet power dissipation as a collector /drain current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 150 oc t j = 1 50 oc v gs = 1 0 v figure 23 pfc fwd figur e 24 pfc fwd power dissipation as a forward c urrent as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 1 50 oc pf c 0 20 40 60 80 100 120 140 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 19 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 25 p fc mosfe t figure 26 pfc mosfet safe operating area as a function gate vol tage vs gate charge of drain-source voltage i d = f(v ds ) v gs = f(qg) at at d = si ngle pulse i d = 15 a t h = 80 o c v gs = 1 0 v t j = t jma x oc figure 29 i gbt rev e rse bias safe operating area i c = f(v ce ) at t j = t jma x -25 oc u ccmi n us =u ccplus switching mode : 3phase spwm pfc v ds (v) i d (a) 10 3 10 0 10 -1 10 1 10 2 10 3 10us 100us 1ms 10ms 100ms dc 10 2 10 0 0 2 4 6 8 10 0 50 100 150 200 qg (nc) v gs (v) 120v 480v 0 20 40 60 80 100 120 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 20 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode tra nsient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 25 0 s d = t p / t r thjh = 2,20 k/ w figure 3 rectifi er diode figure 4 rectifier diode power dissipation as a forward c urrent as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 oc t j = 1 50 oc in put rectifier bridge 0 20 40 60 80 0 0,5 1 1,5 2 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 21 revision: 1
10-F006PPA015SB-M684B preliminary datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 80 0 0 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 100/25 11 2 5 )( tt b ertr copyright vincotech 22 revision: 1
10-F006PPA015SB-M684B preliminary datasheet t j 125 c r gon 16  r goff 16  figure 1 ou tput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge ( 0%) = -15 v v ge ( 100%) = 15 v v ge (1 00%) = 15 v v c (10 0%) = 400 v v c (1 00%) = 400 v i c (1 00%) = 15 a i c (10 0%) = 15 a t doff = 0,14 s t don = 0,05 s t eof f = 0,40 s t eon = 0,19 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c (1 00%) = 400 v i c (1 00%) = 15 a i c (10 0%) = 15 a t f = 0,0 8 s t r = 0, 02 s swi tching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 1 25 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 2 00 2,9 3 3,1 3,2 3,3 3,4 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 1 25 0 0,05 0,1 0,15 0,2 0,25 0,3 time (us) % v ce i c t f i c10% i c90% -50 0 50 100 150 2 00 2,9 3 3,1 3,2 3,3 time(us) % t r v ce i c copyright vincotech 23 revi s ion: 1
10-F006PPA015SB-M684B preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 5,97 kw p o n (100%) = 5,97 kw e o ff (100%) = 0,56 mj e o n (100%) = 0,53 mj t e off = 0,40 s t eon = 0,19 s figure 7 output inverter igbt figure 8 output inverter fwd gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = -15 v v d (1 00%) = 400 v v geo n = 15 v i d (10 0%) = 15 a v c (10 0%) = 400 v i rrm (100%) = -11 a i c (1 00%) = 15 a t rr = 0, 26 s q g = 13 9,20 nc switching definitions output inverter i c 1% v ge 90% -25 0 25 50 75 10 0 1 25 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % p off e off t eoff v ce 3% v ge 10% -20 20 60 100 14 0 180 2,9 3 3,1 3,2 3,3 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -20 0 20 40 60 80 100 120 140 160 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 8 0 120 2,8 2,95 3,1 3,25 3,4 3,55 time(us) % i d v d fitted copyright vincotech 24 revi s ion: 1
10-F006PPA015SB-M684B preliminary datasheet figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 15 a p rec ( 100%) = 5,97 kw q r r (100%) = 1,40 c e rec (100%) = 0,40 mj t q rr = 0,51 s t ere c = 0,51 s swi tching definitions output inverter t qrr -100 -50 0 50 10 0 1 50 2,8 3 3,2 3,4 3,6 3,8 4 % i d q rr time(us) -25 0 25 50 75 100 125 2,8 3 3,2 3,4 3,6 3,8 time(us) % p rec e rec t erec copyright vincotech 2 5 r e v i s ion: 1
10-F006PPA015SB-M684B preliminary datasheet t j 125 c r gon 8  r goff 8  figure 1 pfc mosfe t figure 2 pfc mosfet turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = 0 v v ge (0 % ) = 0 v v ge (10 0%) = 10 v v ge (1 00%) = 10 v v c (10 0%) = 400 v v c (1 00%) = 400 v i c (1 00%) = 15 a i c (10 0%) = 15 a t doff = 0,17 s t don = 0,02 s t eof f = 0,20 s t eon = 0,07 s figure 3 pfc mosfe t figure 4 pfc mosfet turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c (1 00%) = 400 v i c (1 00%) = 15 a i c (10 0%) = 15 a t f = 0,0 288 s t r = 0,0100 s s witching definitions pfc general conditions = = = i c 10% v ge10% t don v ce 3% -100 -50 0 50 100 1 50 200 250 2,96 3 3,04 3,08 3,12 time(us) % i c v ce t eon v ge i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 1 25 -0,1 0 0,1 0,2 0,3 time (us) % t doff t eoff v ce i c v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 1 25 0,13 0,15 0,17 0,19 0,21 0,23 time (us) % v ce i c t f i c10% i c90% -50 0 50 100 150 2 00 250 2,98 3 3,02 3,04 3,06 time(us) % t r v ce i c copyright vincotech 26 revi s ion: 1
10-F006PPA015SB-M684B preliminary datasheet figure 5 pfc mosfet figure 6 pfc mosfet turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 6,04 kw p o n (100%) = 6,0368 kw e off (100%) = 0,06 mj e o n (100%) = 0,37 mj t e off = 0,20 s t eon = 0,07 s figure 7 pfc mosfe t figure 8 pfc fwd gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = 0 v v d (100 %) = 400 v v geo n = 10 v i d (10 0%) = 15 a v c (10 0%) = 400 v i rrm (100%) = -20 a i c (1 00%) = 15 a t rr = 0, 04 s q g = 10 6,24 nc switching definitions pfc i c 1% u ge90% -20 0 20 40 60 80 1 0 0 120 -0,1 0 0,1 0,2 0,3 time (us) % p off e off t eoff u ce 3% u ge10% -50 0 50 100 150 2 00 2,95 3 3,05 3,1 time(us) % p on e on t eon -2 0 2 4 6 8 10 12 -20 0 20 40 60 80 100 120 qg (nc) uge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 -100 -50 0 5 0 100 150 2,98 3,01 3,04 3,07 3,1 3,13 time(us) % i d u d fitted copyright vincotech 27 revi s ion: 1
10-F006PPA015SB-M684B preliminary datasheet figure 9 pfc fwd figure 10 pfc fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 15 a p rec ( 100%) = 6,04 kw q r r (100%) = 0,48 c e rec (100%) = 0,05 mj t q int = 0,18 s t ere c = 0,18 s swi tching definitions pfc t qint -150 -100 -5 0 0 5 0 100 150 2,95 3 3,05 3,1 3,15 3,2 3,25 time(us) % i d q rr -50 0 50 100 150 2,95 3 3,05 3,1 3,15 3,2 3,25 time(us) % p rec e rec t erec copyright vincotech 2 8 revi s ion: 1
10-F006PPA015SB-M684B preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 17mm housing 10-F006PPA015SB-M684B m684b m684b outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 29 revision: 1
10-F006PPA015SB-M684B preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. target product status datasheet status definition this datasheet contains the design specifications for product development. specifications may change in any manner without notice. the data contained is exclusively intended for technically trained staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 30 revision: 1


▲Up To Search▲   

 
Price & Availability of 10-F006PPA015SB-M684B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X